Restriction estimates for hyperbolic paraboloids in higher dimensions via bilinear estimates

نویسندگان

چکیده

Let $\mathbb{H}$ be a $(d-1)$-dimensional hyperbolic paraboloid in $\mathbb{R}^d$ and let $Ef$ the Fourier extension operator associated to $\mathbb{H}$, with $f$ supported $B^{d-1}(0,2)$. We prove that $\lVert Ef \rVert\_{L^p (B(0,R))} \leq C\_{\varepsilon}R^{\varepsilon}\lVert f \rVert\_{L^p}$ for all $p \geq 2(d+2)/d$ whenever $d/2\geq m + 1$, where $m$ is minimum between number of positive negative principal curvatures $\mathbb{H}$. Bilinear restriction estimates proved by S. Lee Vargas play an important role our argument.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sharp Linear and Bilinear Restriction Estimates for Paraboloids in the Cylindrically Symmetric Case

For cylindrically symmetric functions dyadically supported on the paraboloid, we obtain a family of sharp linear and bilinear adjoint restriction estimates. As corollaries, we first extend the ranges of exponents for the classical linear or bilinear adjoint restriction conjectures for such functions and verify the linear adjoint restriction conjecture for the paraboloid. We also interpret the r...

متن کامل

A Sharp Bilinear Restriction Estimate for Paraboloids

X iv :m at h/ 02 10 08 4v 2 [ m at h. C A ] 1 3 D ec 2 00 2 Abstract. Recently Wolff [28] obtained a sharp L2 bilinear restriction theorem for bounded subsets of the cone in general dimension. Here we adapt the argument of Wolff to also handle subsets of “elliptic surfaces” such as paraboloids. Except for an endpoint, this answers a conjecture of Machedon and Klainerman, and also improves upon ...

متن کامل

Weighted estimates for rough bilinear singular integrals via sparse domination

We prove weighted estimates for rough bilinear singular integral operators with kernel K(y1, y2) = Ω((y1, y2)/|(y1, y2)|) |(y1, y2)| , where yi ∈ R and Ω ∈ L∞(S2d−1) with ∫ S2d−1 Ωdσ = 0. The argument is by sparse domination of rough bilinear operators, via an abstract theorem that is a multilinear generalization of recent work by CondeAlonso, Culiuc, Di Plinio and Ou, 2016. We also use recent ...

متن کامل

Decay Estimates for Hyperbolic Systems

In this work we study the Sobolev spaces generated by pseudo-differential operators associated with the group of symmetry of general first order hyperbolic systems. In these spaces we establish pointwise estimates of the solutions of a class of first order systems having convex eigenvalues. Various physical models belong to this class. For example, we consider crystal optics systems and anisotr...

متن کامل

Distributional Estimates for the Bilinear Hilbert Transform

We obtain size estimates for the distribution function of the bilinear Hilbert transform acting on a pair of characteristic functions of sets of finite measure, that yield exponential decay at infinity and blowup near zero to the power −2/3 (modulo some logarithmic factors). These results yield all known L bounds for the bilinear Hilbert transform and provide new restricted weak type endpoint e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Revista Matematica Iberoamericana

سال: 2021

ISSN: ['2235-0616', '0213-2230']

DOI: https://doi.org/10.4171/rmi/1310